# Amoxicillin + clavulanic acid

**Indication**

| Bacterial pneumonia | ICD11 code: CA40.0Z |

**INN**

Amoxicillin + clavulanic acid

**Medicine type**

Chemical agent

**Antibiotic groups**

Access

**List type**

Core

**Formulations**

- **Parenteral > General injections > IV:** 500 mg (as sodium salt) + 100 mg (as potassium salt) powder for injection; 1000 mg (as sodium salt) + 200 mg (as potassium salt) powder for injection
- **Oral > Liquid:** 125 mg + 31.25 mg powder for oral liquid (EMLc); 250 mg + 62.5 mg powder for oral liquid (EMLc)
- **Oral > Solid:** 500 mg (as trihydrate) + 125 mg (as potassium salt); 875 mg (as trihydrate) + 125 mg (as potassium salt)

**EML status history**

- First added in 2017 (TRS 1006)
- Changed in 2021 (TRS 1035)

**Sex**

All

**Age**

Also recommended for children

**Therapeutic alternatives**

The recommendation is for this specific medicine

**Patent information**

- Patents have expired in most jurisdictions
- Read more about patents.

**Wikipedia**

Amoxicillin + clavulanic acid

**DrugBank**

Amoxicillin, Clavulanic acid (Clavulanate)

---

**Expert Committee recommendation**

1. Application to include new higher strength formulations of various antibiotics currently included on the EML to better align with the dosing needs of adults. The Expert Committee recommended the addition of the new strength formulations of amoxicillin, cefalexin, ceftriaxone, ciprofloxacin, clindamycin, phe-noxyimethylpenicillin and vancomycin to the existing listings of these medicines on the EML for the indications for which they are proposed. The Committee noted that the proposed strength formulations are higher than those currently included on the Model List, and are appropriate and aligned to meet recommended doses for treatment of adults, with the advantages of a reduced pill burden in the case of oral formulations, and facilitating a simplified and safer dose administration in the case of intravenous formulations. 2. Application to include a new strength formulation (875 mg + 125 mg) of amoxicillin + clavulanic acid on the EML for the treatment of mild community-acquired pneumonia and intra-abdominal infections in adults. The Expert Committee noted that the proposed formulation of amoxicillin + clavulanic acid will provide a higher dose of amoxicillin, without increasing the dose of clavulanic acid, and is particularly suitable for more unwell patients. In addition, the Committee noted that a higher ratio of amoxicillin to clavulanic acid is generally associated with less diarrhoea, a recognized adverse effect of this combination. The addition of this new formulation will also allow recommended amoxicillin doses to be achieved with a reduced pill burden for patients. The Committee therefore recommended the addition of the new strength formulation of amoxicillin + clavulanic acid 875 mg + 125 mg tablets to the core list of the EML for the treatment of mild community-acquired pneumonia and intra-abdominal infections in adults.
1. Application to include new higher strength formulations of various antibiotics currently included on the EML to better align with the dosing needs of adults. The application requested the inclusion of new higher strengths of the following antibiotics on the EML to better align with the dosing needs of adults: Amoxicillin: solid oral dosage form 1 g Cefalexin: solid oral dosage form 500 mg Ceftriaxone: powder for injection 2 g Ciprofloxacin: solid oral dosage form 500 mg Clindamycin: injection 600 mg/4 mL, 900 mg/6 mL Phenoxymethylpenicillin: tablet 500 mg Vancomycin: powder for injection 500 mg 1 g All of the antibiotics for which additional strength formulations are proposed are currently included on the EML is various other formulations and strengths for the indications described below (1). 2. Application to include a new strength formulation (875 mg + 125 mg) of amoxicillin + clavulanic acid on the EML for the treatment of mild community-acquired pneumonia and intra-abdominal infections in adults. Amoxicillin + clavulanic acid, in multiple formulations, has been included on the Model Lists since 1997. Amoxicillin + clavulanic acid is currently included on the EML and EMLc as a first- or second-choice empiric treatment for several bacterial infections. The EML currently recommends amoxicillin + clavulanic acid as a second-choice option for community-acquired pneumonia because in most cases there is no need to broaden the spectrum of antibacterial activity to cover more resistant pathogens and amoxicillin (or phenoxymethylpenicillin) can safely be used. The other reason is that amoxicillin + clavulanic acid is associated with more frequent side-effects than amoxicillin alone – mostly diarrhoea, including Clostridioides difficile infection (1). Amoxicillin + clavulanic acid is also recommended in the EML as a first-choice option for the empiric treatment of mild, community-acquired intra-abdominal infections in patients who are not critically ill and there is no suspicion of sepsis or septic shock. Community-acquired pneumonia is common worldwide and is a leading cause of morbidity and mortality, with an especially high burden in low-income countries (2). According to the Global Burden of Disease study, in 2017 among all ages and sexes combined, an estimated 471 million new cases of lower respiratory tract infections (including community-acquired pneumonia) occurred globally (3). The most common causative pathogen worldwide is Streptococcus pneumoniae, and viral co-infection is not unusual. In general, the incidence of community-acquired pneumonia and risk of death increase with age (4). Community-acquired pneumonia is curable and preventable. Most people who develop this infection can be successfully treated with a 5-day antibiotic regimen. Vaccines to prevent community-acquired pneumonia caused by certain pathogens (e.g. Streptococcus pneumoniae, Haemophilus influenzae type b and influenza virus). Intra-abdominal infections include uncomplicated infections with no involvement of the peritoneal cavity and no abscess formation and complicated infections with involvement of the peritoneal cavity and/or abscess formation. The most frequent intraabdominal infections include acute appendicitis, acute cholecystitis, acute cholangitis, acute diverticulitis and pyogenic liver abscess. Treatment of these infections usually requires a combination of antibiotics and surgery to achieve adequate control of the source of infection.
for infections including acute invasive bacterial diarrhea, cholera, complicated intra-abdominal infections, enteric fever, low-risk febrile neutropenia and upper urinary tract infections. Treatment regimens recommend ciprofloxacin doses of 500 mg every 12 hours for 3, 5 or 7 days, depending on the indication or, in the case of cholera, a single dose of 1 g. The proposed 500 mg oral formulation will allow for a reduced pill burden to complete the course of treatment compared with the currently listed 250 mg strength formulation, and should facilitate adherence to treatment. Clindamycin: injection 600 mg/4 mL, 900 mg/6 mL The higher strength formulations of clindamycin are preferable for the treatment of bone and joint infections to maximize the chance of bacterial eradication in order to achieve clinical success. For adults and adolescents diagnosed with osteomyelitis, clindamycin is an acceptable treatment option when methicillin-resistant Staphylococcus aureus (MRSA) is suspected or confirmed when antimicrobial susceptibility of MRSA to clindamycin is proven or likely. Intravenous clindamycin at a dose of 600 mg every 8 hours for 4–6 weeks is a recommended dosage regimen in most cases. Clindamycin may also be used in patients allergic to penicillin.

Phenoxymethylpenicillin: solid oral dosage form 500 mg Most adult and adolescent patients with mild community-acquired pneumonia, bacterial pharyngitis or dental infections can be successfully treated with phenoxymethylpenicillin 500 mg every 6 hours for 5 days; however, a longer treatment duration may be recommended in some circumstances. The proposed 500 mg strength oral formulation will allow for a reduced pill burden to complete the course of treatment compared with the currently listed 250 mg strength formulation and should facilitate adherence to treatment. Vancomycin: powder for injection 500 mg, 1 g For adult and adolescent patients with high-risk febrile neutropenia when MRSA infection is suspected, weight-based dosing of vancomycin is recommended (15–20 mg/kg every 12 hours). The 500 mg and 1 g strength formulations will allow for the achievement of recommended dose using fewer vials, compared with the currently listed 250 mg strength. 2. Application to include a new strength formulation (875 mg + 125 mg) of amoxicillin + clavulanic acid on the EML for the treatment of mild community-acquired pneumonia and intra-abdominal infections in adults. Benefits: The rationale for the inclusion of the 875 mg + 125 mg formulation of amoxicillin + clavulanic acid is to increase the amoxicillin to clavulanic acid ratio from 4:1 (500 mg + 125 mg formulation) to 7:1. There is limited evidence about differences in clinical and microbiological efficacy of the different ratios of amoxicillin to clavulanic acid. However, the advantage of the 7:1 ratio formulation is increased exposure to amoxicillin without increased exposure to clavulanic acid. The reason for limiting exposure to clavulanic acid is that increasing its dose exposes patients to a higher risk of gastrointestinal side-effects (especially diarrhoea) with only a minimal increase in efficacy against beta-lactamases (5). Amoxicillin + clavulanic acid is recommended for the treatment of mild community-acquired pneumonia because it is effective against the most likely bacterial pathogens responsible for this syndrome (notably Streptococcus pneumoniae and Haemophilus influenzae, including strains that produce beta-lactamases) and because it is safe, inexpensive and readily available in many settings. In general, amoxicillin alone remains effective against Streptococcus pneumoniae isolates in most cases because these isolates are not known to produce beta-lactam enzymes (5). However, other pathogens (mostly Haemophilus influenzae) produce beta-lactamases in a large proportion of cases (6,7) and could therefore be resistant to amoxicillin alone. Such cases would therefore benefit from treatment with amoxicillin + clavulanic acid. A key element of the treatment of community-acquired pneumonia is to maximize the chance of bacterial eradication in order to achieve clinical success and to reduce the risk of resistance developing. For beta-lactam agents, maximal clinical efficacy depends on the time that the plasma concentration of the drug remains above the level of the minimal inhibitory concentration (MIC) for the target pathogen (T>MIC). For amoxicillin, a T>MIC of at least 30–40% between dosing intervals is required to effectively treat most pathogens responsible of mild community-acquired pneumonia. Therefore, the advantage of a formulation with a higher dose of amoxicillin is that it can improve the efficacy of amoxicillin + clavulanic acid for the treatment of pathogens with higher MICs (8). In particular, the 875 mg +125 mg formulation (given three times a day) would achieve bacteriological efficacy against strains with amoxicillin MICs of up to 4 mg/L (T>MIC 34% for MICs of 4 mg/L, 57% for MICs of 2 mg/L and 69% for MICs of 1 mg/L), while the 500 mg + 125 mg formulation (three times a day) would only achieve bacteriological efficacy against strains with MICs of up to 2 mg/L (T>MIC 43% for MICs of 2 mg/L and 55% for MICs of 1 mg/L) (9). An additional advantage of amoxicillin + clavulanic acid that applies to both its use for the treatment of mild community-acquired pneumonia and mild community-acquired intra-abdominal infections is its lower potential for resistance compared with other antibiotic options that are sometimes used for the treatment of these syndromes, most notably fluoroquinolones. In patients with community-acquired pneumonia, amoxicillin + clavulanic acid is a particularly valid option in patients who would be at higher risk of poor outcomes if initial empiric treatment were inadequate (e.g. patients with multiple comorbidities who are often more vulnerable to infections or patients with a higher risk of resistant infections due to frequent antibiotic exposure). The clinical and bacteriological efficacy of the 875 mg +125 mg formulation is high (> 90% for clinical efficacy and 80–90% for microbiological efficacy at the end of treatment in trials where this formulation has been used (10)) including in settings with a high prevalence of penicillin-resistant Streptococcus pneumoniae (11). Many patients with intra-abdominal
Committee considerations

1. Application to include new higher strength formulations of various antibiotics currently included on the EML to better align with the dosing needs of adults. All proposed formulations are approved by several regulatory agencies including the US Food and Drug Administration and European Medicines Agency, and are available in most countries. 2. Application to include a new strength formulation (875 mg + 125 mg) of amoxicillin + clavulanic acid on the EML for the treatment of mild community-acquired pneumonia and intra-abdominal infections in adults. There are several suppliers of the 875 mg + 125 mg formulation globally at a cost of about US$ 10 per pack (12 tablets) in high-income countries. Amoxicillin + clavulanic acid 875 mg + 125 mg has regulatory approval globally and is available in most countries.

EML recommendations: Bacterial pneumonia

**First choice**

COMMUNITY-ACQUIRED PNEUMONIA - MILD TO MODERATE

- amoxicillin
- phenoxymethylpenicillin

**Second choice**

COMMUNITY-ACQUIRED PNEUMONIA - MILD TO MODERATE

- doxycycline
- amoxicillin + clavulanic acid

COMMUNITY-ACQUIRED PNEUMONIA - SEVERE [CHILDREN]
1. Application to include new higher strength formulations of various antibiotics currently included on the EML to better align with the dosing needs of adults.


2. Application to include a new strength formulation (875 mg + 125 mg) of amoxicillin + clavulanic acid on the EML for the treatment of mild community-acquired pneumonia and intra-abdominal infections in adults.


